Bayesian Downscaling Methods for Aggregated Count Data
نویسندگان
چکیده
منابع مشابه
Bayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model
In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...
متن کاملBayesian Correlation Analysis for Sequence Count Data
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities' measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different tra...
متن کاملComparison of data-driven methods for downscaling ensemble weather forecasts
This study investigates dynamically different data-driven methods, specifically a statistical downscaling model (SDSM), a time lagged feedforward neural network (TLFN), and an evolutionary polynomial regression (EPR) technique for downscaling numerical weather ensemble forecasts generated by a medium range forecast (MRF) model. 5 Given the coarse resolution (about 200-km grid spacing) of the MR...
متن کاملBayesian inference on quasi-sparse count data
There is growing interest in analysing high-dimensional count data, which often exhibit quasi-sparsity corresponding to an overabundance of zeros and small nonzero counts. Existing methods for analysing multivariate count data via Poisson or negative binomial log-linear hierarchical models with zero-inflation cannot flexibly adapt to quasi-sparse settings. We develop a new class of continuous l...
متن کاملA Bayesian moving average model for correlated count data
In this paper we propose a new regression modeling approach for responses that are a correlated time series of counts. The approach is based on a hierarchical Bayesian model that incorporates a latent moving average process with gamma random errors. This contrasts with the majority of existing models that remove correlation with an autoregressive process based on log-normal errors, and is likel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Agricultural and Resource Economics Review
سال: 2017
ISSN: 1068-2805,2372-2614
DOI: 10.1017/age.2017.26